
A Formal Interactive Verification Environment
for the Plan Execution Interchange Language
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Abstract. The Plan Execution Interchange Language (PLEXIL) is an
open source synchronous language developed by NASA for command-
ing and monitoring autonomous systems. This paper reports the devel-
opment of the PLEXIL’s Formal Interactive Verification Environment
(PLEXIL5), a graphical interface to the formal executable semantics of
PLEXIL. Among its main features, PLEXIL5 provides model checking
of plans with support for formula editing and visualization of counterex-
amples, interactive simulation of plans at different granularity levels,
and random initialization of external environment variables. The for-
mal verification capabilities of PLEXIL5 are illustrated by means of a
human-automation interaction model.

1 Introduction

Plan execution is a centerpiece of systems involving intelligent software agents
such as robotics, unmanned vehicles, and habitats. The Plan Execution Inter-
change Language PLEXIL [8] is a synchronous language developed by NASA to
support autonomous spacecraft operations. Programs in PLEXIL, called plans,
specify actions to be executed by an autonomous system as part of normal space-
craft operations or as reactions to changes in the environment. The computer
system on board the spacecraft that executes plans is called the executive and is a
safety-critical component of the space mission. The PLEXIL Executive [18] is an
open source executive developed by NASA (http://plexil.sourceforge.net).
PLEXIL has been used on mid-size applications such as robotic rovers, a pro-
totype of a Mars drill, and to demonstrate automation capabilities for potential
future use on the International Space Station. A summary of PLEXIL’s syntax
and semantics is presented in Section 2.

Spacecraft operations require flexible, efficient, and reliable plan execution.
Given its critical nature, PLEXIL’s operational semantics has been formally
specified in the Prototype Verification System (PVS) [5]. Moreover, key meta-
theoretical properties of the language, such as determinism and compositionality,
have been mechanically verified in PVS [6]. Based on this formalization, a formal
executable semantics of PLEXIL has been specified in the rewriting logic engine
Maude [7]. The executable semantics of PLEXIL serves as an efficient formal



interpreter of the language and, as illustrated by this paper, is at the core of the
PLEXIL Formal Interactive Verification Environment (PLEXIL5).

PLEXIL5 is an interactive environment for verifying and testing PLEXIL
plans and for studying new features and possible variants of the language. A
proof of concept of such an environment was originally presented in [11], but
that tool was mainly concerned with the semantic validation of the language.
This paper reports significant progress on the evolution of this proof of concept
into an environment for the validation and formal verification of PLEXIL plans.
To emphasize these new capabilities, the word “Visual” in the original acronym
became “Verification” in the new system. PLEXIL5 consists of a graphical envi-
ronment developed in Java that interfaces with the rewriting logic semantics in
Maude. Users are not required to have any knowledge of the Maude system to
take advantage of PLEXIL5’s formal analysis capabilities. An overview of some
architecture and design features, software metrics, and aspects of user interaction
are presented in Section 3.

The formal analysis capabilities in PLEXIL5 are based on the rewriting logic
semantics of the language and the formal analysis tools available in the Maude
system, such as the rewriting engine, the model checker, and the strategy lan-
guage [4]. The environment supports the verification of temporal properties on
PLEXIL plans. These properties can be provided by the user or automatically
generated from plan annotations such as preconditions, invariants, and post-
conditions. PLEXIL5 provides a mechanisms for modeling the interaction of
plans with the external environment. Technical details on the formal analysis
capabilities, i.e., simulation, model checking, and semantic validation, offered
by PLEXIL5 are given in Section 4. As a case study, Section 5 presents a for-
malization of a simple cruise control system in PLEXIL and illustrates how
PLEXIL5 can aid in discovering and correcting errors in plans. The case study
presented in this paper and more information about PLEXIL5 is available from
http://shemesh.larc.nasa.gov/people/cam/PLEXIL.

2 PLEXIL Overview

This section presents an overview of PLEXIL, a synchronous language for au-
tomation developed by NASA. The reader is referred to [8] for a detailed de-
scription of the language.

A PLEXIL program, called a plan, is a tree of nodes representing a hierar-
chical decomposition of tasks. Interior nodes, called list nodes, provide control
structure and naming scope for local variables. The primitive actions of a plan
are specified in the leaf nodes. Leaf nodes can be assignment nodes, which as-
sign values to local variables, command nodes, which call external commands, or
empty nodes, which do nothing. PLEXIL plans interact with a functional layer
that provides the interface with the external environment. This functional layer
executes the external commands and communicates the status and result of their
execution to the plan through external variables.
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Nodes have an execution state, which can be inactive, waiting , executing ,
iterationend , failing , finishing , or finished , and an execution outcome, which can
be unknown, skipped , success, or failure. They can declare local variables that
are accessible to the node in which they are declared and all its descendants. In
contrast to local variables, the execution state and outcome of a node are visible
to all nodes in the plan. Assignment nodes also have a priority that is used to
solve race conditions. The internal state of a node consists of the current values
of its execution state, execution outcome, and local variables.

Each node is equipped with a set of gate conditions and check conditions that
govern the execution of a plan. Gate conditions provide control flow mechanisms
that react to external events. In particular, the start condition specifies when
a node starts its execution, the end condition specifies when a node ends its
execution, the repeat condition specifies when a node can repeat its execution,
and the skip condition specifies when the execution of a node can be skipped.
Check conditions are used to signal abnormal execution states of a node and they
are pre-condition, post-condition, and invariant. The language includes Boolean,
integer and floating-point arithmetic, and string expressions. It also includes
lookup expressions that read the value of external variables provided to the plan
through the executive. Expressions appear in conditions, assignments, and argu-
ments of commands. Each one of the basic types is extended by a special value
unknown that can occur in the case, for instance, when a lookup fails.

The execution of a plan in PLEXIL is driven by external events that trigger
changes in the gate conditions. All nodes affected by a change in a gate condi-
tion synchronously respond to the event by modifying their internal state. These
internal modifications may trigger more changes in gate conditions that in turn
are synchronously processed until quiescence is reached for all nodes involved.
External events are considered in the order in which they are received. An ex-
ternal event and all its cascading effects are processed before the next event is
considered. This behavior is known as run-to-completion semantics.

Henceforth, the notation (Γ, π) is used to represent the execution state of a
plan, where Γ is a set of external variables and their current values, and π is
a set of nodes and their internal states. Formally, the semantics of PLEXIL is
defined on states (Γ, π) by a compositional layer of five reduction relations [8].
The atomic relation describes the execution of an individual node in terms of
state transitions triggered by changes in the environment. The micro relation
describes the synchronous reduction of the atomic relation with respect to the
maximal redexes strategy, i.e., the synchronous application of the atomic rela-
tion to the maximal set of nodes of a plan. The remaining three relations are
the quiescence relation, the macro relation, and the execution relation that, re-
spectively, describe the reduction of the micro relation until normalization, the
interaction of a plan with the external environment upon one external event,
and the n-iteration of the macro relation corresponding to n time steps.

Consider the PLEXIL plan in Figure 1. The plan consists of a root node
Exchange of type list, and leaf nodes SetX and SetY of type assignment. The node
Exchange declares two local variables x and y. The values of these variables are

3



exchanged by the synchronous execution of the node assignments SetX and SetY.
The node Exchange also declares a start condition and an invariant condition.
The start condition states that the node can start executing whenever the value
of an external variable T is greater than 10. The invariant condition states that
at any state of execution the values of x and y add up to 3.

Exchange: {
Integer x = 1;

Integer y = 2;

StartCondition: Lookup(T) > 10;

Invariant: x+y == 3;

NodeList:

SetX: { Assignment: x = y; }
SetY: { Assignment: y = x; }

}

Fig. 1. A PLEXIL plan that reads the value of an external variable T and syn-
chronously exchanges the values of internal variables x and y.

3 PLEXIL5

PLEXIL5 is a graphical environment for the formal simulation and verification
of PLEXIL plans, and the validation of the intended semantics of the language
against its rewriting logic semantics. This section presents an overview of its
architecture and design, including some software metrics, and aspects regarding
user interaction in the environment.

3.1 Architecture and Design

Figure 2 depicts PLEXIL5’s key components and their interaction. The graph-
ical user interface has been developed in Java using the model-view-controller
pattern and, for some views on execution states, uses third-party open-source
libraries such as JGraph and JGoodies. The object oriented model represents the
hierarchical structure of plans, their execution behavior, and the external envi-
ronment. The view consists of several classes that present the user with views of
the tree-like-structure of plans. The controller consists of a custom controller-
facade class and listener classes using and extending the Java framework.

PLEXIL5 supports a number of input formats defining plans. For this pur-
pose, the tool links a series of parsers and translators that internally (i) generate
the format supported by the rewriting logic semantics of the language imple-
mented in Maude and (ii) construct an object oriented plan model from Maude’s
output. The parsers are all generated from XML Schemas and BNF-like speci-
fications by external tools, such as ANTLR, JAXB, and JavaCC. Some of the
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Fig. 2. PLEXIL5 logical components and their interaction.

XML schemas have been borrowed and adapted from PLEXIL’s software dis-
tribution. Java and Maude communicate as processes at the operating system’s
level with help of the Java/Maude Integration API, developed as part of the
PLEXIL5 framework.

The implementation of PLEXIL5 consists of 270 Java classes and 38 Maude
modules, among other resources. The Java classes comprise 85K lines of code,
of which 24K are automatically generated by the external tools. The Maude
modules are 2K lines of code.

3.2 User Interaction

Once PLEXIL5 is launched for the first time, the user is required to select the
folder containing PLEXIL’s rewriting logic semantics. This selection is kept for
future sessions and can be modified at any time through the graphical interface.

A plan is read from a file containing one of the several supported PLEXIL
notations, then transformed into an object model, and ultimately presented to
the user with a visual representation of the initial state of the plan. The visual
representation of plans implemented in the prototype described in [11] was based
on trees. That representation is only practical for plans with a small numbers of
nodes. In the current version, plans are displayed by default as tables and the
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hierarchical structure of plans is given by tabular indentations. The original tree
representation of plans is still supported.

A plan can be edited by the user with the help of the graphical user interface.
The plan can be accompanied by a script file, in XML format, describing the
values of external variables at different macro steps. External variables can be
initialized to random Boolean, integer, and floating-point values, and can be
specified using an enumeration or a range. The following XML script specifies
the values for the external variable T of integer type, for the plan Exchange in
Figure 1. In the first macro step the variable T is assigned the value 2, at the
second macro step it is assigned a random non-negative value, and in the third
macro step it is assigned a value randomly chosen from 2 or 7.

<Script>

<Step>

<State name="T" type="int"><Value>2</Value></State>

</Step>

<Step>

<State name="T" type="int"><RandomValue min="0"/></State>

</Step>

<Step>

<State name="T" type="int">

<RandomValue><Enum value="2"/><Enum value="7"/></RandomValue>

</State>

</Step>

</Script>

The translation process of a plan and its script only takes place the first time
the plan is loaded and every time a plan is edited.

Plans can be executed at the level of the micro, quiescence, macro, and ex-
ecution semantic relations, with undo-redo support. The tool can automatically
generate formulas for checking invariant, pre, and post conditions, and the user
can also define formulas from atomic predicates parameterized by the active plan.
A Maude specification in the syntax of the rewriting logic semantics is generated
from the object model every time the user requests to perform an action on the
current state of execution. This Maude specification and the user’s command are
delegated to Maude via the Java/Maude integration API. The resulting output
is then used to generate a new instance of the object model that is graphically
presented to the user.

4 Formal Analysis in PLEXIL5

The formal analysis capabilities offered by PLEXIL5 are based on PLEXIL’s
rewriting logic semantics written in Maude. This section provides technical de-
tails on how these capabilities, i.e., simulation and debugging, model checking,
and semantic validation, are implemented in PLEXIL5 via Maude’s verification
tools. This section uses standard notation and terminology of rewriting logic;
the user is referred to [4] for more details.
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Rewriting logic [10] is a general semantic framework that unifies a wide
range of models of concurrency. Rewriting logic specifications can be executed
in Maude, a high-performance rewriting logic implementation, and thus take
advantage of all the formal analysis tools available in Maude. A rewriting logic
specification is a tuple R = (Σ,E,R) where (Σ,E) is an order-sorted equational
theory with signature Σ and equations E, and a set of rewrite rules R. The
equational theory (Σ,E) induces the congruence relation =E on the set TΣ of
Σ-ground terms defined for any t, u ∈ TΣ by t =E u if and only if (Σ,E) ` t = u.
The expression TΣ/E denotes the initial algebra of (Σ,E). Similarly, a rewrite
theory R = (Σ,E,R) induces the rewrite relation −→R on the set TΣ/E of E-
equivalence classes of ground Σ-terms defined by any t, u ∈ TΣ by [t]E −→R [u]E
if and only if t −→ u can be deduced from R by the deduction rules in [3]. The
tuple TR=(TΣ/E ,−→R) is called the initial reachability model of R. Intuitively,
TR represents the concurrent system whose states are the set of E-equivalence
classes of ground Σ-terms and whose concurrent transitions are specified by R.

4.1 Simulation and Debugging

The rewriting logic semantics of a synchronous language such as PLEXIL poses
interesting practical challenges because Maude implements the maximal concur-
rency of rewrite rules by interleaving, i.e., asynchronous concurrency. To over-
come this situation, the rewriting logic semantics P = (ΣP , EP , RP) of PLEXIL
implements a serialization procedure [13] that completely and correctly simu-
lates PLEXIL’s synchronous semantics. Since PLEXIL is deterministic, the seri-
alization procedure implemented by P can be equationally defined in EP , thus
avoiding the interleaving semantics associated with rewrite rules in Maude.

A PLEXIL node in P is a term object denoted 〈O : C | a1 : v1, . . . , am : vm〉,
where O is the object’s identifier corresponding to the node’s qualified name, C
is the object’s class corresponding to the node’s type, e.g., assignment, list, local
variable, etc., and where v1 to vm are the current values of the attributes a1 to
am corresponding to the node’s internal state of execution. An execution state
of a plan has sort PlxState and the form (Γ , π), where Γ has the structure of
a multiset of pairs representing the set Γ of external variables and their values,
and π is a term that has the structure of a multiset of objects representing the
set of nodes π. Multiset union is denoted by a juxtaposition operator that is
declared associative and commutative, so that rewriting is multiset rewriting
supported in Maude.

Given a PLEXIL plan p, PLEXIL5 internally generates the rewrite theory
P(p) that extends P with the constructs of p. The rewrite theory P(p) is a formal
model of p in rewriting logic and it induces the rewrite relation −→P(p),m that
uses the equationally defined serialization procedure to soundly and completely
simulate PLEXIL’s synchronous micro relation for p.

Maude’s strategy language [9] is used to simulate the quiescence, macro,
and execution semantic relations from −→P(p),m. By definition, the quiescence
relation −→P(p),q is the normalized relation obtained from −→P(p),m, namely,
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−→P(p),q=−→↓P(p),m. Because −→P(p),m is deterministic, the quiescence rela-
tion −→P(p),q is also deterministic. For the purpose of simulating the macro
and execution relations, PLEXIL5 allows for the definition of a sequence Γ =
Γ0, Γ1, . . . , Γn of collections of external variables indicating their value at each
time step 0, 1, . . . , n (Γ can be empty when the plan does not depend on external
variables). For a sequence Γ0, Γ1, . . . , Γn, the macro relation −→P(p),M is de-
fined by (Γi, π) −→P(p),M (Γ ′, π′) if and only if Γ ′ = Γi+1 and (Γi, π) −→P(p),q

(Γi, π′), for 0 ≤ i < n. The execution relation −→P(p),E normalizes a given
state with the macro relation and then normalizes the resulting state further
with the quiescence relation in the last time step. It is formally defined by
−→P(p),E=−→↓P(p),M ◦ −→P(p),q.

4.2 Model Checking

In general, a Kripke structure can be associated with the initial reachability
model TR of a rewrite theory R = (Σ,E,R) by making explicit the intended
sort State of states in the signature Σ and the relevant set Φ of atomic predicates
on states. The set of atomic propositions Φ is defined by an equational theory
EΦ = (ΣΦ, E ] EΦ). Signature ΣΦ contains Σ and a sort Bool with constant
symbols ⊥ and > of sort Bool , predicate symbols φ : State → Bool for each
φ ∈ Φ, and optionally some auxiliary function symbols. Equations in EΦ define
the predicate symbols in ΣΦ and auxiliary function symbols, if any, including the
Boolean operations on the sort Bool . For φ ∈ Φ and a ground term of sort State
t ∈ TΣ,State , the semantics of φ in TR is defined by EΦ as follows: φ(t) holds
in TR if and only if EΦ ` φ(t) = >. This defines the Kripke structure KΦR =
(TΣ/E,State ,−→R, LΦ) with labeling function LΦ defined for any t ∈ TΣ,State by
φ ∈ LΦ(t), written KΦR, t |= φ, if and only if φ(t) holds in TR. All formulas of the
Linear Temporal Logic (LTL) can be interpreted in KΦR in the standard way.

PLEXIL5 supports LTL model checking of plans at the level of the micro rela-
tion on the sort PlxState. The set of atomic propositions is parameterized by the
set of qualified names of nodes and variables (internal and external) in the plan
to be model checked. The BNF-like notation in Figure 3 defines the syntax of the
atomic propositions ΦN and formulas LTLN for model checking a plan p with
set of qualified names N . The collection of PLEXIL Boolean expressions param-
eterized by N is denoted with BExprN . They include comparison operators for
Boolean and arithmetic expressions, evaluation of local variables, and lookups.
Atomic propositions ΦN include the constants true and false, predicates for test-
ing the status, outcome, and gate and checking conditions of a node. They also
include the atomic proposition eval for testing PLEXIL’s Boolean expressions.
Formulas in LTLN include the usual Boolean connectives, and the temporal con-
nectives ‘always’ (G), ‘eventually’ (F), ‘next’ (X), ‘until’ (U), ‘weak until’ (W),
and ‘release’ (R), all interpreted in the standard way.

Given a plan p, an initial state (Γ, π), and a LTLN formula ϕ over the names
N in p, PLEXIL5 uses Maude’s LTL model checker to check KΦNP(p), (Γ , π) |= ϕ,
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StatusN ::= inactive | waiting | executing | finishing | iterended | failing | finished

FailureN ::= parent | invariant | pre | post

OutcomeN ::= unknown | skipped | success | fail(µ)

CondN ::= start | end | repeat | pre | post | invariant

ΦN ::= true | false | status(λ, σ) | outcome(λ, ω) | ψ(λ, δ) | eval(δ)

LTLN ::= α | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ϕ⇒ ϕ′ | Gϕ | Fϕ | Xϕ | ϕUϕ′ | ϕWϕ′ | ϕRϕ′

with variables
µ : FailureN λ : N σ : StatusN ω : OutcomeN
ψ : CondN δ : BExprN α : ΦN ϕ,ϕ′ : LTLN

Fig. 3. Parameterized atomic predicates ΦN and LTL formulas LTLN in PLEXIL5.

where KΦNP(p) is the Kripke structure associated with TP(p), with the set of states
TΣ(p)/E(p),PlxState , transition relation −→P(p),m, and labeling function LΦN .

PLEXIL5 provides interactive means for producing and visually inspecting
counterexamples. The model checking window is equipped with three predefined
checks that can be performed on any PLEXIL program: “check invariants”,
“check pre-conditions”, and “check post-conditions”. Pushing one of the three
buttons generates the corresponding LTL formulas. Additionally, an input field
in provided to enter custom, application specific LTL formulas specified using
the above syntax. For example, the formula

G invariant(Exchange, true) ∧ F status(Exchange,finished)

for the plan Exchange in Figure 1, tests the invariant of node Exchange and that
it will eventually transition to state finished .

Counterexamples are displayed in a tree table with collapsible nodes, con-
forming to the PLEXIL program tree structure, and can be interactively navi-
gated step-by-step for debugging and validation purposes.

4.3 Semantic Validation

The rewriting logic semantics P is being used to study variations and extensions
of PLEXIL. This section provides examples of such variants and extensions that
have been studied in PLEXIL5.

PLEXIL’s macro relation is especially important because it is the semantic
relation defining the interaction of a plan with the external environment. On
the one hand, it is reasonable to have access to the external state as often as
possible so that lookups in each atomic reduction can use the latest information
available. On the other hand, it can be computationally expensive to implement
such a policy because sensors or similar artifacts can significantly delay the ex-
ecution of a plan. Another dimension of the problem arises when a guard of an
internal loop depends on external variables: should the loop run-to-completion
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regardless of the possible updates to the value of the variable in its guard, or
should it stop at each iteration so that the value of the external variable can be
updated? The rewriting logic semantics P has been modified to accommodate
alternative specifications of PLEXIL’s semantics with different definitions of the
macro relation. These semantic variants of PLEXIL have been studied and ex-
ercised using PLEXIL5. Thanks to its modular design, PLEXIL5 can integrate
the alternative semantics with a click of a button: the user has the freedom to
choose the formal semantics of preference.

Another concrete example that illustrates the use of PLEXIL5 by the de-
signers of the language is the addition of a gate condition called exit condition.
The exit condition provides a mechanism for a clean interruption of execution.
In order to support this feature in PLEXIL5, the specification of the PLEXIL’s
atomic relation in Maude was modified to include the intended semantics. Given
the modular definition of the formal semantics none of the other rewriting rela-
tions were modified.

5 A Case Study

A cruise control system adapted from [2] is presented to showcase the model
checking capabilities implemented in PLEXIL5. Originally, the model was de-
signed for the Enhanced Operator Function Model (EOFM) formalism, which
is intended for the study of human behavior in a human-computer interaction
framework. However, PLEXIL shares many characteristics with EOFM, includ-
ing the hierarchical structure of tasks decomposed into sub-tasks and the exe-
cution governed by conditions (pre, post , repeat , invariant).

5.1 Model Description

The model consists of three main components: car, driver, and stoplight, which
execute synchronously. The operator drives the car on a street, approaching the
stoplight. Other cars may merge into the lane from a side ramp, roughly midway
through. The car has three controls represented in the model: the gas and break
pedals to manage speed and acceleration, and a cruise button to switch the cruise
mode on/off and set the cruise speed. The human operator’s plan is to safely
operate the controls of the car to achieve three sub-goals: (i) drive at a desired
cruise speed (ii) avoid the possible merging traffic from the ramp, and (iii) obey
the traffic light at the intersection, i.e., stop the car in time if the light turns
red. All three properties can be represented in PLEXIL. Here we focus on the
third, which is a safety property.

The model parameters are: the geometry of the intersection, i.e., the length
of each street segment; the location of the ramp along the street, in distance
units; the stoplight cycle length, in time units, for each color; and the speed
range, in distance per time units.
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increase

set desired
cruise speed

maintain
cruise speed

no 
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(slowdown)
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(speed up)

roll to stop break

seq xor xor

Drive to ramp Avoid traffic on ramp Stop at red light

speed = fast
acceleration > 0

cruise = on/moderate

roll cruise on break

seq

Fig. 4. Cruise control model with task hierarchy.

Model variables. The model variables and their range are selected according
to an abstraction scheme that discretizes the values to allow finite state model
checking, yet leaves sufficient information to make the study relevant.

– distance ∈ [0 . . . 55], the distance of the car to the intersection;
– time ∈ [0 . . . 28];
– speed ∈ {stopped = 0, slow = 1,moderate = 2, fast = 3};
– acceleration ∈ {−1, 0, 1};
– cruise enabled ∈ {true, false};
– cruise speed ∈ {0, 1, 2, 3};

Transitions. The car advances according to its speed until it reaches the intersec-
tion, formally, update distance := distance− speed∗timestep while the condition
speed > 0∧distance > 0 holds. The discretized speed can change by at most one
unit at a time, hence the possible values for acceleration are only {−1, 0, 1}. The
stoplight counts down the time units to the end of the green-yellow-red cycle by
assigning stoplight := stoplight − timestep. The light is red in the time interval
[0 . . . 8], yellow in [9 . . . 12], and green in [13 . . . 28].

The complexity resides in capturing the decision making of the driver. In the
first segment, the driver wants to set the cruise control to a desired speed (e.g.,
moderate). The driver has the choice to accelerate from slow or decelerate from
fast , then enable the cruise control which will maintain the desired speed. On
the second segment, the driver needs to react to merging traffic from the ramp.
If any car is on the ramp, the driver may choose to let the other car in front by
slowing down, or behind by speeding up. On the last segment, the driver has to
react to the stoplight turning red. The driver may choose to maintain the speed
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and then break before reaching the stoplight, or roll to a stop by releasing the
gas pedal.

Comparison with the EOFM model.

– The original abstraction has been refined in PLEXIL to allow more distance
and time divisions, making it more realistic; in the EOFM model the distance
is heavily discretized (abstract locations 0 to 7) and not coordinated with
the time to travel each segment.

– Non-determinism is introduced by lookups of environment variables. The
script plays out a sequence of random choices for three Boolean environment
variables: MergingTraffic,LetBehind ,RollStop.

– Some of the concepts are essentially cognitive in nature, as they depend
on the subjective (sometimes erroneous) perceptions and assessments of the
situation by the human operator, hence they cannot be as naturally captured
in the formal model. However, both normative and erroneous behaviors are
captured in the PLEXIL model, and it is the job of the model checker to
discover violations.

– The synchronous behavior is natural in PLEXIL, no further instrumentation
is necessary, while in EOFM synchrony has to be expressly specified, using
appropriate decomposition operators.

5.2 Verification

The property of interest can be expressed either as a global invariant in the
PLEXIL model itself and checked with the generic “check invariants” button,
or entered in the LTL Model Checking dialog window. The safety property is
specified in the top level task node Main as the invariant condition:

not(stoplight <= red and distance == 0 and speed > 0),

stating that it is not the case that the vehicle is moving at the intersection when
the light is red.

The PLEXIL5 simulator shows that the execution of the plan ends with the
outcome invariantFail for the root node (and parentFail for the successor nodes)
when the environment variables MergingTraffic, LetBehind , and RollStop are all
true. The result of model checking the safety property is an execution trace
where the formula is violated. The counter example can be described as follows:

1. the car enters at low speed at distance = 55 and time = 28;
2. the driver accelerates to the desired moderate speed and sets the cruise on

at time = 20 and distance = 42;
3. at the ramp, with distance = 33, the driver decides to let the merging car

behind by accelerating to fast at time = 12 and distance = 25;
4. the stoplight light turns yellow, the driver chooses to roll to a stop (assessing

there is sufficient distance to the intersection to do so, by releasing the gas
pedal);
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5. with the acceleration negative, the driver does not disengage the cruise mode,
the cruise control kicks in and maintains the cruise speed to moderate for
one execution cycle at time = 6 and distance = 10;

6. the effect of the automation is that the (now necessary) breaking is too late
to decrease the speed from moderate to low at time = 2 and distance = 2,
and then stopped in two execution cycles; and

7. when time expires, the car is moving in the intersection on the red light.

The PLEXIL5 model checking environment provides the means for detecting
the aforementioned error using the predefined “check invariant” test. To correct
the problem, the node corresponding to the “roll to stop” action has to be
rectified, in order to include a check on the status of the cruise control. The
driver either has to make sure it is disabled before initiating the “roll to stop”
option or manually disable it. In PLEXIL, this can be instrumented via a start
condition or, by duality, with the corresponding negated skip condition. No other
combination of environment lookup variables leads to violations in this model.

The full model of the cruise control system consists of 252 lines of PLEXIL
code. The generated Maude file is 929 lines long.

6 Related Work and Conclusion

An executable semantics of PLEXIL has been developed by P. J. Strauss in the
Haskell language [16] with the aim of analyzing features of the language regarding
the plan interaction with the environment. As a result, new data types represent-
ing the external world have been proposed for more dynamic runtime behavior
of PLEXIL plans. More recently, D. Balasubramanian et al. have proposed Poly-
glot, a framework for modeling and analyzing multiple Statechart formalisms,
and have initiated research towards the formal analysis of a Statechart-based
semantics of PLEXIL [1]. In rewriting logic literature, similar approaches to
the one used in PLEXIL5 have been proposed for other languages and protocol
analysis. In particular, A. Verdejo and N. Mart́ı-Oliet [17] have explored the idea
of having easy-tool-building techniques from operational semantics specified in
Maude. S. Santiago et al. [15] have developed a graphical user interface that an-
imates the Maude-NPA verification process, displaying the complete search tree
and allowing users to display graphical representations of final and intermediate
nodes of the search tree. Maude-NPA is a crypto protocol analysis tool developed
in Maude that takes into account algebraic properties of crypto-systems.

This paper reported significant progress on the evolution of PLEXIL5, an en-
vironment for the verification and validation of NASA’s synchronous language
PLEXIL. The environment uses the formal semantics of the language written in
Maude to formally analyze PLEXIL plans. Maude is a rewriting logic formalism
that provides advanced verification tools such as a fast rewriting engine and a
LTL model checker. In PLEXIL5, the user is presented with the option to exe-
cute any combination of the micro, quiescence, macro, and execution reduction
relations. In this way, the user has the freedom to determine the level of detail for
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simulating and debugging plans. The verification tools are available in PLEXIL5
through a graphical interface that does not require knowledge of rewriting logic
or the Maude system.

The formal environment has been used by the developers of the language
to investigate semantic variations and extensions of PLEXIL. These include a
new semantics for the execution of loops and a new feature in the language to
handle exit conditions. Furthermore, several minor issues in the original intended
semantics of PLEXIL have been identified and corrected. PLEXIL5 has become
a formal benchmark for executives and will be part of PLEXIL’s distribution in
an upcoming release.

An important subset of PLEXIL’s core language is currently supported by
PLEXIL5. The main features of the language that are not supported by the for-
mal semantics are array variables (arrays are not directly supported in Maude),
PLEXIL’s resource model, which enables the specification of resource require-
ments for commands, and Update nodes, which provide an importing mechanism
to the language. Regarding research on PLEXIL5’s rewriting logic semantics, fu-
ture work will explore the possibility of having an operational semantics of the
language using the framework presented in [12], so that the dependency between
the rewrite rules specifying the atomic relation and the serialization procedure
can be eliminated. Another interesting alternative is to study the extension of
the K framework [14] with priorities for state transitions, so that it can accom-
modate the specification of the atomic relation. Regarding the verification and
validation capabilities in PLEXIL5, future work will add support for symbolic
execution and concolic testing of PLEXIL plans, and will study scalability issues
with mid-size and large plans.
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12. Rocha, C., Muñoz, C.: Simulation and verification of synchronous set relations in
rewriting logic. In: da Silva Simão, A., Morgan, C. (eds.) SBMF. Lecture Notes in
Computer Science, vol. 7021, pp. 60–75. Springer (2011)
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